

Dystrybucja: elmier.pl elmier@elmier.pl +48 500 167 343

Application Note

RF measurements with the DTA-2137(C)

1. Introduction

The DTA-2137(C) is a DVB-S(2) receiver card for PCI Express that can receive Transport Streams BBFRAMEs from an L-Band modulated DVB-S(2) signal. While receiving these signals, the DTA-21 is capable of measuring several statistics, such as symbol rate, Bit Error Rate (BER), Reed-Solome errors counters and Modulation Error Rate (MER). This application note contains the availad measurements for the DTA-2137(C) and provides some background information about these measurements.

2. Measurements supported by the DTA-2137(C)

Measurement	Supported for		Commont	
	DVB-S	DVB-S2	Comment	
Receiver lock	yes	yes	Overall lock status	
MER / SNR / MER	yes	yes	Please refer to §3 - MER estimation in the DTA-21 for more information	
Eb/N0	yes	CCM only	Energy per bit to noise power spectral density ration	þ
Es/N0	yes	yes	Energy per symbol to noise power spectral density	/
Link margin	yes	CCM only	Difference between SNR of the received signal and SNR at which the receiver cannot demodulate the any more	l the signa
RF level	yes	yes		
Reed-Solomon error counter	yes	n.a.	The number of packets declared erroneous by the Solomon FEC. This will be a continuous counter an counter will not be reset upon a read	Reed d this
BER pre-Viterbi	yes	n.a.	Pre-Viterbi bit error rate	
BER post-Viterbi	yes	n.a.	Post-Viterbi bit error rate	
BER pre-Reed-Solomo	n yes	n.a.	Pre-Reed-Solomon bit error rate	
BER pre-LDPC	n.a.	CCM only	Pre-LDPC bit error rate. Please refer to §5 for more information	
BER post-LDPC	n.a.	yes	Post-LDPC bit error rate	
BER pre-BCH	n.a.	yes	Pre-BCH bit error rate	
BER post-BCH	n.a.	yes	Post-BCH bit error rate	
Spectrum inversion	yes	yes		
Occupied bandwidth	yes	yes		
Roll-off factor	yes	yes		

n.a. = not applicable. E.g BER pre-BCH is not applicable to DVB-S, as DVB-S does not use BCH coding.

3. MER estimation in the DTA-2137(C)

The modulation error ratio or MER is a measure used to quantify the performance of a digital rece MER is closely related to the signal-to-noise ratio. If we assume that the transmitter does not intro systematic errors such as I/Q unbalance (a valid assumption in practice), MER is equivalent to the signal-to-noise ratio of the signal.

Note: SNR, CNR, Es/NO and MER are equivalent if the signal contains no systematic errors

The functional block diagram below shows how the demodulator on the DTA-2137(C) estimates M The tuner receives the DVB-S2 signal and demodulates it into I and Q. A Timing Recovery block extracts the symbol clock, which is used to sample I and Q. The result is the "measured" position the constellation points, which are also mapped to the nearest "ideal" points in the constel diagram. The difference between the two is the "error vector". The Root Mean Square of the erro vector is taken, followed by a low-pass filter. The final result is a MER estimate.

Note: If the signal power is low or there is a lot of noise (low value of SNR/MER), the ne constellation point may not always be the correct one. The demodulator will correct the error, but will not reconstruct the originally intended symbol. What this means is that at very low SNR/MER, MER estimate of the demodulator will be a bit too high. The actual MER is lower (=worse) than th MER estimate.

4. Accuracy of MER measurements in the DTA-2137(C)

In order for the DTA-2137(C) to perform an accurate MER measurement, the power level o applied RF signal needs to be in the range of -30dBm to -50dBm. Please find below the accuracy MER measurements in the DTA-2137(C), for RF signals with the indicated power level.

The RF power level is between -30dBm and -40dBm:

Measured MER	Accuracy	Description	
0dB to 22dB	±2dB	• The measured MER is accurate in this range	
22dB and above	-	The quality of the signal is goodThe measured MER is not accurate in this r	

The RF power level is between -40dBm and -50dBm:

Measured MER	Accuracy	Description
0dB to 17dB	±2dB	• The measured MER is accurate in this range
17dB and above	-	The quality of the signal is goodThe measured MER is not accurate in this ran

The RF power level is -50dBm or lower:

Measured MER	Accuracy	Description	
-	-	 The measured MER is not accurate in this ran 	ge

DT-AN-2137-2

5. Relation between MER and pre-LDPC BER

In DVB-S2, the pre-LDPC BER is the bit error rate before any error correction has been applied. It be computed from the MER for QPSK and 8PSK using the formulas below. The BER is dependent of the modulation type used, so the formulas for QPSK and 8PSK are different.

BER(SNR, QPSK) =
$$\frac{1}{2} * \operatorname{erfc}\left(\sqrt{\frac{1}{10^{(-SNR)}}} * \frac{1}{\sqrt{2}}\right)$$

BER(SNR, 8PSK) = $\frac{1}{3} * \operatorname{erfc}\left(\sqrt{\frac{1}{10^{(-SNR)}}} * \sin\left(\frac{22}{8}\right)\right)$

Notes

- The function erfc(x) is the complementary error function, see e.g. Wikipedia, "Error function";
- Instead of SNR, MER can also be used as input parameter in these formulas, as under circumstances SNR and MER are identical;
- These formulas assume that the noise distribution is Gaussian (AWGN channel);
- The BER for APSK schemes is more complex and is also dependent on the code rate used.

These formulas have been validated using DekTec's advanced demodulator simulatisees of tware the table below. The correspondence between theoretical and measured values is good.

SNR	BER (QPSK)	BER (8PSK)	
(dB)	measured	formula	measured	formula
-3.0	2.3e-01	2.4e-01		
-2.0	2.1e-01	2.1e-01		
-1.0	1.8e-01	1.9e-01		
0.0	1.6e-01	1.6e-01		
1.0	1.3e-01	1.3e-01		
2.0	1.1e-01	1.0e-01		
3.0	8.2e-02	7.9e-02		
4.0	5.8e-02	5.6e-02	1.4e-01	1.3e-01
5.0	3.8e-02	3.8e-02	1.1e-01	1.1e-01
6.0	2.3e-02	2.3e-02	9.3e-02	9.3e-02
7.0	1.3e-02	1.3e-02	7.4e-02	7.5e-02
8.0	5.8e-03	6.0e-03	5.7e-02	5.8e-02
9.0	2.3e-03	2.4e-03	4.2e-02	4.2e-02
10.0	7.7e-04	7.8e-04	2.9e-02	2.9e-02
11.0	1.9e-04	1.9e-04	1.8e-02	1.8e-02
12.0	3.4e-05	3.4e-05	1.0e-02	1.0e-02
13.0	3.9e-06	4.0e-06	5.0e-03	5.2e-03
14.0	1.9e-07	2.7e-07	2.1e-03	2.2e-03
15.0	0.0e+00	9.4e-09	7.4e-04	7.8e-04
16.0	0.0e+00	1.4e-10	2.1e-04	2.1e-04
17.0	0.0e+00	7.2e-13	4.1e-05	4.2e-05
18.0	0.0e+00	9.8e-16	5.9e-06	5.7e-06

¹ This software has been used amongst others in the DVB working groups for the definition of DVB-T2 and DVB-C2

DT-AN-2137-2

The text box below shows a piece of C/C++ code to compute BER from SNR for QPSK and 8PSK.

```
static double Q(double x)
ł
    return 0.5 * erfc(x / sqrt(2.0));
}
double get_ber_qpsk(double snr)
{
    double N0;
   N0 = pow(10.0, -snr / 10.0);
    return Q(sqrt(1.0 / N0));
}
double get_ber_8psk(double snr)
{
    double N0, Ps;
   N0 = pow(10.0, -snr / 10.0);
    Ps = 2 * Q(sqrt(2.0/N0)*sin(M_PI / 8));
    return Ps / 3.0;
}
```

The text box below shows a piece of C/C++ code to compute BER from SNR for QPSK, 8PSK, 16AI and 32APSK, which uses a table with pre-computed values for the minimum distance between the constellation points.

```
static double Q(double x)
ł
   return 0.5 * erfc(x / sqrt(2.0));
}
double get ber psk(double snr, int constellation scheme, int coderate)
{
   int modulation index;
   int bps;
   switch (constellation_scheme)
    ł
   case QPSK:
                   modulation_index = 0; bps = 2; break;
   case 8PSK:
                   modulation_index = 1; bps = 3; break;
    case 16APSK:
       bps = 4;
       switch (coderate)
        {
       case 2 3: modulation index = 2; break;
        case 3 4: modulation index = 3; break;
        case 4_5: modulation_index = 4; break;
        case 5_6: modulation_index = 5; break;
        case 8_9: modulation_index = 6; break;
       case 9 10: modulation index = 7; break;
        }
       break;
```

```
case 32APSK:
       bps = 5;
        switch (coderate)
        {
        case 3 4:
                   modulation_index = 8; break;
        case 4_5: modulation_index = 9; break;
       case 5_6: modulation_index = 10; break;
case 8_9: modulation_index = 11; break;
        case 9 10: modulation index = 12; break;
        3
       break:
    }
   double tab_d[13] =
    {
                   // QPSK
        2.0,
        0.585786, // 8PSK
        0.297691,
                   // 16APSK 2/3
        0.334570,
                   // 16APSK 3/4
                   // 16APSK 4/5
        0.337731,
        0.341644,
                   // 16APSK 5/6
        0.347320, // 16APSK 8/9
        0.346937, // 16APSK 9/10
        0.134409, // 32APSK 3/4
        0.145289, // 32APSK 4/5
        0.149584, // 32APSK 5/6
        0.159906, // 32APSK 8/9
        0.160651, // 32APSK 9/10
   };
   double N0, Ps;
   N0 = pow(10.0, -snr / 10.0);
   Ps = 2 * Q(sqrt(tab_d[modulation_index] / (2.0 * N0)));
   return Ps / bps;
}
```

Derec