

Application Note DT-AN-IP-2

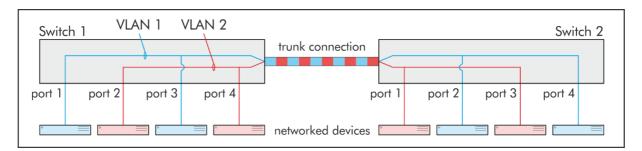
VLAN for DekTec Network Adapters

1. Introduction

VLAN (Virtual LAN) is a technology to segment a single physical network into multiple independent virtual networks. The VLANs are isolated from each other on the data link layer (layer 2): A network application connected to one VLAN cannot communicate with an application on another VLAN

Reasons to use VLAN include the following:

- Logical portioning of network traffic;
- Security, to minimize the number of hosts to which broadcast packets are sent;
- Improve network performance.

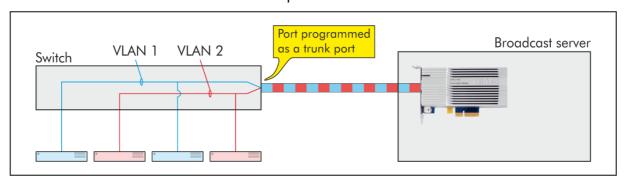

For example, in broadcast networking infrastructure, the video/audio/transport streams might be on a certain VLAN (or a number of VLANs), while other network traffic such as management and control is put on a separate VLAN.

The protocol most commonly used today in configuring VLANs is IEEE 802.1Q3. This works by add a so-called 802.1Q header (§3.3) to the Ethernet frame. Next to VLAN identifying information, this header contains a priority level to set the QoS required for the Ethernet frame. This can be used traffic-flow management.

2. Using VLANs

2.1. Using Switches to Create VLANs

The usual way to segment a network into multiple VLANs is by using VLAN-aware switches. Each of the switch is associated with a certain VLAN. For example, in the figure below, two VLANs are defined. The blue networked devices (PCs, servers, ...) are connected to VLAN 1, the red ones to VLAN 2. The devices itself are unaware of the VLAN they are connected too. However, the so-call "trunk-connection" between the two switches must be VLAN-aware, otherwise the switches cannot distinguish between the VLANs. For this reason, Ethernet packets on a trunk connection are tagge with a VLAN identifier.



¹ Hosts on different VLANs cannot communicate at the MAC layer, but they can communicate on the IP level through Layer 3 router.

2.2. Supporting VLAN Directly from a NIC

Sometimes it is useful to support multiple VLANs directly from a Network Interface Card (NIC). Fo example, in a scenario with a server running several virtual machines with a single NIC, each VM want to connect to a different VLAN. This can be achieved by programming the switch port to wh the server NIC is connected as a "trunk port".

DekTec network adapters support this way of working. Multiple VLANs can be configured, and in Windows each of them will show up as a separate connection in Control Panel's Network Connect window. From the DekTec SDK it is straightforward to transmit or receive TS-over-IP streams to o a specific VLAN.

The following DekTec network adapters support multiple VLANs:

Type Number	Description
DTA-160	Gigabit Ethernet and triple DVB-ASI ports for PCI bus
DTA-2160	Gigabit Ethernet and triple DVB-ASI ports for PCI Express bus
DTA-2162	Dual Gigabit Ethernet ports for PCI Express bus

3. The VLAN Protocol

3.1. VLAN Standards

The following standards related to VLAN are supported:

Standard	Description	
	Defines a system of VLAN tagging for Ethernet frames and the accompancedures to be used by bridges and switches in handling tagged frames.	ying pro
IEEE 802.1p	Quality of Service (QoS) prioritization scheme that uses a 3-bit field Priori Point (PCP) in the Ethernet frame header to differentiate network traffic.	

3.2. Format of an Ethernet Frame

An Ethernet frame without VLAN tagging information contains the following fields:

Preamble	Destination addre	ssource addres	s EtherType	Payload	CRC
8 bytes	6 bytes	6 bytes	2 bytes	461500 bytes	4 byte

For VLAN tagging, a 4-byte IEEE 802.1Q header is added between source address and EtherType:

Preamble	Destination addre	s s ource addres	s 802.1Q	EtherType	Payload	CRC
8 bytes	6 bytes	6 bytes	4 bytes	2 bytes	421500 bytes	4 byte

3.3. Format of an IEEE 802.1Q Header

The IEEE 802.1Q header contains the following sub-fields:

Byte	Bits	Field	Field Name	Description
1,2	150	TPID	Tag Protocol Identifier	16-bit field set to 0x8100 in order to identify the frame as an IEEE 802.1Q-tagged frame.
3,4	1513	13 PCP Priority Code Point		3-bit field defining the frame priority level. IEEE 802.1p defines the priority levels.
	12 DEI Drop Eligible Indicator No		Drop Eligible Indicator	Not supported by the DekTec VLAN driver.
110 VID		VID	VLAN Identifier	12-bit field specifying the VLAN to which the fra belongs.

The VLAN Identifeerniquely identifies a VLAN. The maximum number of VLANs is 4094. VLAN IDs 0 and 0xFFF are reserved. VLAN ID 0 is used for untagged packets, i.e. Ethernet packets without information. The default VLAN usually has a VLAN ID of 1.

3.4. IEEE 802.1p Priority Levels

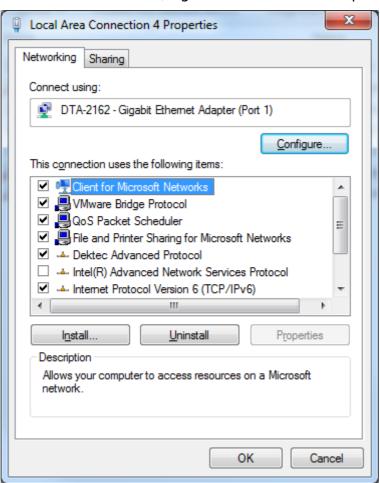
The PCP field in the IEEE 802.1Q header (§3.3) encodes the priority of Ethernet frames. It can be by Ethernet switches to implement QoS management. The priority levels are defined in IEEE 802. as follows:

PCP	Priority	Traffic Type	Comment
1	0 (lowest)	BK = Background	
0	1	BE = Best Effort	
2	2	EE = Excellent Effort	
3	3	CA = Critical Applications	
4	4	VI = Video	Jitter should remain less than 100ms
5	5	VO = Voice	Jitter should remain less than 10ms
6	6	IC = Internetwork Control	
7	7 (highest	NC = Network Control	

QoS management with priority levels is independent from the virtual LAN function. However, the are coupled because they share the same sub-header. It is perfectly fine to use QoS managementhe PCP field, but not the VLAN function. In that case, VLAN ID must be set to 0.

² The standard abbreviates VLAN Identifier by VID, but we will use the more descriptive VLAN ID.

4. Installing VLAN for DekTec Adapters


4.1. Windows

To use VLAN on a Windows host, you have to install the DekTec Advanced Protocol priver This driver is included in .zip, available from the DekTec website, section Downloads, page Drivers and SDKs. Runningainstall.exe from this zip file, which you probably have done already to install the DekTec Windows drivers, stores the advanced protocol driver files in:

Program Files (x86) \DekTec\Drivers\DtaNwAp64.

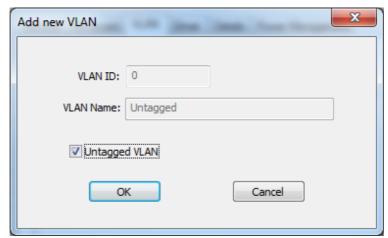
To actually instaltanwap64, perform the following steps:

- 1) In Control Panel, select Network and Sharing Center (or similar, depending on your version of Windows) to show the Network Connections window.
- 2) Identify the Local Area Connection, right click and select Properties.

- 3) Click the Install button.
- 4) Select Protocol and push the Add button.
- 5) Push the Have Disk button and locate the directory where the driver is located: Program Files (x86) \DekTec\Drivers\DtaNwAp64 (or similar).
- 6) SelecbtaNwAp64.inf, press OK, and the driver will be installed.

After the driver is installed, you can add VLANs by selecting the Configure button in the Propertie window (see screenshot at step 2 above). In the VLAN tab, you can add a new VLAN with a specif VLAN ID and description. Please note that adding a VLAN may take some time. The dialog should be closed before installation is completed.

A VLAN can be removed by selecting it and pushing the Remove button.



If you don't see the VLAN tab, check whether the DekTec Advanced Protocol driver is listed in the protocol items of the connection (see the screenshot on the previous page). If it is not listed, you try to reinstall the protocol driver. If the protocol driver is installed, and you still don't see the VLA tab, check whether you have the latest version of DekTec network driver) installed.

A new (virtual) network adapter is created for each VLAN that is added. This network adapter can be removed with the Remove button in the VLAN tab. The figure below shows an example: Local Connection 4 is the physical network connection representing port 1 of a DTA-2162. Two virtual network adapters have been created, one for VLAN 5 and one for VLAN 10.

If you add a VLAN, the protocol bindings of the main network connection are disabled and you can use this connection to send/receive network packets. If you want to receive the network packets are not directed to a specific VLAN, you have to add an "Untagged VLAN" by selecting the 'Untag VLAN' check box in the Add new VLAN dialog:

4.2. Linux

Recent Linux versions support VLAN out of the box. If you have an older Linux version, you must recompile the Linux kernel with the VLAN option enabled.

To use VLAN on Linux, you need to add VLANs and specify a VLAN ID for each of them. You can dethis manually, or automatically during system start.

4.2.1. Manually Creating VLANs

Use the config command from the console, e.g.

vconfig add eth0 5

This vconfig command creates a VLAN device on with interface nameth 0.5. Using this interface name, you can now use all the network tools in the same way as you use them with a renetwork adapter without VLAN.

To activate the VLAN interface with VLAN ID 5.fdsafig eth0.5 up

4.2.2. Automatically Creating VLANs at System Start

You can set up your system so that the VLAN devices for a network device are automatically creaduring system start. How to configure this is distribution dependent. Below a short description is vided for some popular Linux distributions. For other distributions, please refer to the documenta for VLAN configuration details.

For Debian, Ubuntu and derivative distributions you have to add the virtual VLAN device to the fil /etc/network/interfaces. For example, add the following three lines to automatically create a VLAN with VLAN ID 5 on network devices at boot time.

```
auto vlan5
iface vlan5 inet dhcp
vlan_raw_device eth0
```

Obviouslyeth0 has to be replaced by the network device on your system5 doydthe required VLAN interface name. Note that the IP address is obtained via DHCP.

For RHEL and CentOs you have to create a new filetin/sysconfig/network-scripts. The filename has to be the physical interface name, followed by a '.', followed by the VLAN ID numbe For example, for VLAN ID 5, physical interface and dynamic IP configuration with DHCP, the filename should before—eth0.5, and the contents should be as follows:

DEVICE=eth0.5 BOOTPROTO=dhcp ONBOOT=yes VLAN=yes

5. Using VLAN from DTAPI

To use VLAN with DTAPI is relatively straightforward. You just have to let DTAPI know which VLAN you want to use to transmit (or receive) the Ethernet packets to (or from). This can be done using SetIpPars function with DatisipPars argument.

Theptrsippars structure contains a member anid that must be set to the required VLAN ID. If you want to send 'untagged' packets, this member must be set to 0. The VLAN ID must be one of the VLAN IDs created during the VLAN setup.

You can also set the IEEE 802.1p priority field in the priority field. DTAPI will create Ethernet frames with the priority value stuffed in the PCP field of the IEEE 802.1Q header.

Please find below a code snippet that shows setting typest practure for transmitting a stream on VLAN ID 12 with IEEE 802.1p priority level 4 (Video with <100ms latency and jitter).

```
DtTsIpPars TsIpPars;
                              // TS-over-IP parameters used for Tx
// Set up destination IP address and port
TsIpPars.m Ip[0] = 192;
TsIpPars.m Ip[1] = 168;
TsIpPars.m_Ip[2] = 1;
TsIpPars.m Ip[3] = 100;
TsIpPars.m Port = 12345;
// Set up VLAN parameters
TsIpPars.m_VlanId = 12; // Sets VLAN ID to 12
TsIpPars.m VlanPriority = 4; // Sets IEEE 802.1p priority to 4
// Set up other parameters
TsIpPars.m TimeToLive = 128;
TsIpPars.m NumTpPerIp = 7;
TsIpPars.m_Protocol = DTAPI_PROTO_UDP;
TsIpPars.m FecMode = DTAPI FEC DISABLE;
TsIpPars.m Flags = DTAPI IP V4;
TsIpPars.m Mode = DTAPI IP NORMAL;
// Set the TS-over-IP parameters in the output channel.
// This assumes TsOutp is a DtOutpChannel object that has been
// attached to the hardware (e.g. DTA-2162)
TsOutp.SetIpPars(TsIpPars);
```